Pyrolysis oil application in OPRA gas turbines

M. Beran
Combustion engineer

OPRA proprietary information
Contents

→ Introduction to OPRA Turbines

→ Application of pyrolysis oil in the OP16 gas turbine

→ Result from the initial test campaign

→ Conclusions and future work
Introduction to OPRA

- OPRA was established in the Netherlands in 1991
- OPRA is an internationally expanding, high growth company with unique, proprietary technology
- The OP16 combines robustness and simplicity with high performance
- OPRA has demonstrated market success for oil & gas as well as industrial and commercial CHP applications
- OPRA has sold more than 65 gas turbines over the last five years
- The OP16 has accumulated more than 700,000 operating hours
The 1.9 MW OP16 gas turbine engine combines the best of simplicity and high performance.

- Reduction gear
- 6.7:1 ratio compressor
- Dual-fuel & low emissions combustors (4)
- High-efficiency radial turbine is highly resistant to FOD*
- Bearings in cold part of engine

Table:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Efficiency</td>
<td>26%</td>
</tr>
<tr>
<td>Exhaust Flow</td>
<td>8.7 kg/s</td>
</tr>
<tr>
<td>Exhaust Gas Temp.</td>
<td>570°C</td>
</tr>
<tr>
<td>Rotor Speed</td>
<td>26,000 rpm</td>
</tr>
</tbody>
</table>

*Foreign Object Damage

OPRA proprietary information
Application of pyrolysis oil in the OP16 gas turbine

- The OP16 all radial design is robust
- A radial turbine less sensitive to contaminants in the fuels
- Performance of a radial turbine impeller is less sensitive to blades surface distortions compared to axial turbines
- OP16 does not require intricate turbine blade cooling geometries which would be subject to plugging
- OP16 engine utilizes four tubular combustors
 - Easy maintenance
 - The size of combustor is not limited
The development of the low calorific fuel combustor

- The low caloric fuel combustor development was done as a part of joint project with BTG Bioliquids BV

- The Pyrolysis oil is one of the good alternatives to fossil fuels as a source of “Green energy”.

Development programme

1. Initial test campaign using pyrolysis on the existing OP16 conventional burner
2. Development and testing of a low calorific fuel combustor
3. Full-scale engine testing
Test set-up:

- Atmospheric combustor test rig at OPRA
 - Atmospheric combustion rig: Air mass flow rate up to 0.3 kg/s@300°C
 - Flexibility to test wide spectra of liquid and gaseous fuel

- Combustor hardware
 - Combustion chamber – convection flame tube working in diffusion combustion mode
 - Fuel injector – Pintle airblast nozzle
 - Fuel system – dual fuel (Pyrolysis oil/Ethanol) with fuel pre-heating
 - Emission indicators
Test campaigns

- Three test campaigns with different flame tube variants were performed
- Determination of optimal burning condition
- Determination of optimal fuel handling condition
- Determination of the emissions

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [kg/m³]</td>
<td>1150</td>
</tr>
<tr>
<td>Low Heating Value [MJ/kg]</td>
<td>18.7</td>
</tr>
<tr>
<td>Viscosity at 38 °C [cSt]</td>
<td>17</td>
</tr>
<tr>
<td>Polymerization temperature [°C]</td>
<td>140</td>
</tr>
<tr>
<td>pH</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Flame tube No 1

- Original OP16 flame tube
- Unburned fuel sediments were found on the flame tube inner walls after the test
- Large amount of unburned fuel as a “sparks” in the combustor exit was observed
Flame tube No. 2

- Complete wall film cooling was removed
- Amount of sediments on the flame tube inner wall was significantly decreased
- Large amount of sediments found behind the dilution zone
- Not possible to reach full load condition due to overloading of the combustor

Flame tube after second test
Flame tube No. 3

- Air split was changed to reach stoichiometric condition in the primary zone
- Combustor effective area and air flow were decreased to keep same pressure loss – larger combustor volume
- Pure pyrolysis oil was possible to burn between 70-100% load
- During start up and run at combustor loads below 70% a mixture of Pyrolysis oil/Ethanol was required
- Amount and size of unburned fuel were significantly decreased
- No sediment on inner flame tube wall was found also behind the dilution zone

Flame tube after third test
Summary of the test results

- Three test campaigns with different flame tube variants were performed.
- The optimal configuration was found for running with pure pyrolysis oil between 70 to 100% load.
- The low calorific value and longer residence time needed for proper burning require larger combustor volume.
- The air split was changed to keep stoichiometric air–fuel ratio in the primary zone → high flame temperature → increasing of reaction rate.
Future work

→ Phase 2 of the development program started
→ Design of real scaled combustor is undergoing
→ Test campaign focusing on combustor performance
→ Determination of optimum mixture of pyrolysis oil/ethanol for part-load operation
→ Some additional analysis e.g. CFD analyses of new combustor internal flow and fuel flow in the injector is undergoing